POLY-IBC ARCHITECTURE

IBC cell architecture with passivating contacts for highest performance

Agnes Mewe

SunDay, 7 November 2018, Bussum, NL

THE IMPORTANCE OF EFFICIENCY

Limited space → highest energy yield

Balance of System cost: per area \rightarrow Less cost per unit energy

IBC CELLS

- > Free of metal on the front side \rightarrow highest current
- > Can be simple processing
 - \rightarrow industrial piloting of TNO diffused "Mercury" IBC
- > High lab efficiencies demonstrated

26.1% IBC cell: p-FZ with POLO contacts http://isfh.de

PASSIVATING CONTACTS

Contact in diffused wafer → trade-off between contact shielding (Voc) and conductance (FF)

Shielding (V_{oc})
 contact area (FF)

Passivating oxide + highly doped polySi → no trade-off

Shielding (V_{oc})
contact area (FF)
Shielding (V_{oc})
Contact area (FF)

INTEGRATION IN IBC

PATTERN EVALUATION

- Structuring of the polySi doped layers
 - by screen printing processes (masking for doping or etching)
- Rsheet evaluation by THz imaging
 - Gap visible
 - Very fast

POLYSI SURFACE PASSIVATION

Sample lay-out

- Symmetrical samples
- Textured (& polished)
- Passivating oxide + polySi

Capping layer

POLYSI PASSIVATION RESULTS

M.K. Stodolny et al., "Novel schemes of *p*+ polySi hydrogenation implemented in industrial 6" bifacial front-and-rear passivating contacts solar cells", EU-PVSEC 2018 Proceedings, to be published

IBC HALF-FAB PASSIVATION

High quality passivation: up to 725 mV implied V_{oc}

A.A. Mewe et al., "Full wafer size IBC cell with polysilicon passivating contacts", SiliconPV 2018, AIP Conf. Proc. 1999, 040014-1

POLYSI METALLIZATION DAMAGE

n⁺ polySi with Ag paste: Ag nanoclusters intruding in wafer

p⁺polySi with AgAl paste: inverted pyramids in wafer

H.E. Çiftpınar et al., "Studies of screen printed metallization for polysilicon based passivating contacts", Energy Procedia 124 (2017) 851-861

FT reference FT R&D 1 FT R&D 2

M.K. Stodolny et al., "Novel schemes of *p*+ polySi hydrogenation implemented in industrial 6" bifacial front-and-rear passivating contacts solar cells", EU-PVSEC 2018 Proceedings, to be published

IBC ARCHITECTURE: UNIT CELL DESIGN

n-Cz n° polysilicon p° polysilicon

Increase of emitter width:

- Jsc (better collection)
- Voc (less metal contact)
- FF (less metal contact)
- Efficiency: good for

small unit cell size

IBC ARCHITECTURE: UNIT CELL DESIGN

n-Cz

Decrease of unit cell size:

- Jsc (neutral)
- Voc (more metal contact)
- FF (more metal contact)
- Efficiency

IBC ARCHITECTURE: UNIT CELL DESIGN

ACKNOWLEDGEMENTS

Rijksdienst voor Ondernemend Nederland

PolySi team

SUMMARY

- IBC with passivating polySi contacts
 - > High current, high voltage \rightarrow high efficiency
- polySi surface passivation: H-rich capping
 - > p^+ polySi on texture 720 mV (10 fA/cm2)
 - n⁺ polySi on texture 740 mV (1 fA/cm2)
 - > Firing stable
- > Metal contact can be improved
 - New pastes for testing
- > IBC cell architecture
 - Small unit cells → higher efficiency
 - Bifacial IBC → similar performance

THANK YOU FOR YOUR ATTENTION

1444

TNO.NL/ECNPARTOFTNO

ECN > TNO innovation for life