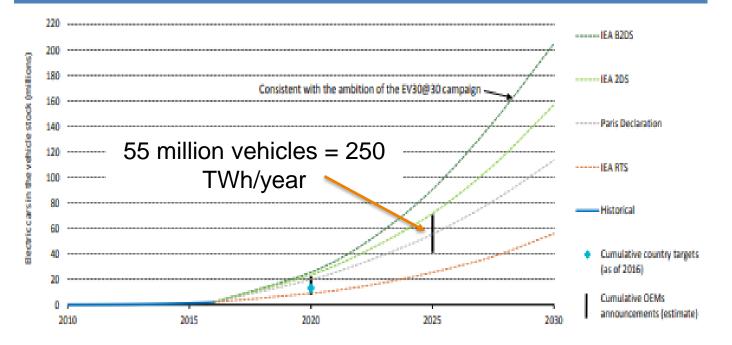

PV ON-BOARD

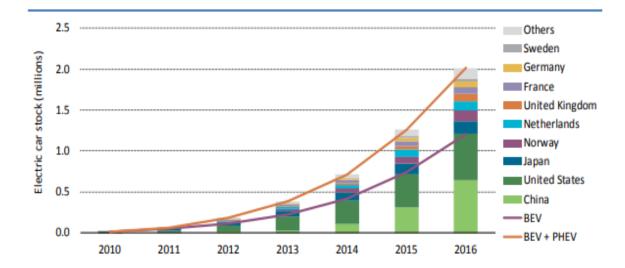
Sunday 2018 | Dr. Bonna Newman

ACKNOWLEDGEMENTS

Anna Carr Lars Okel Victor Rosca Nico Dekker Maurice Goris Peter Blokker

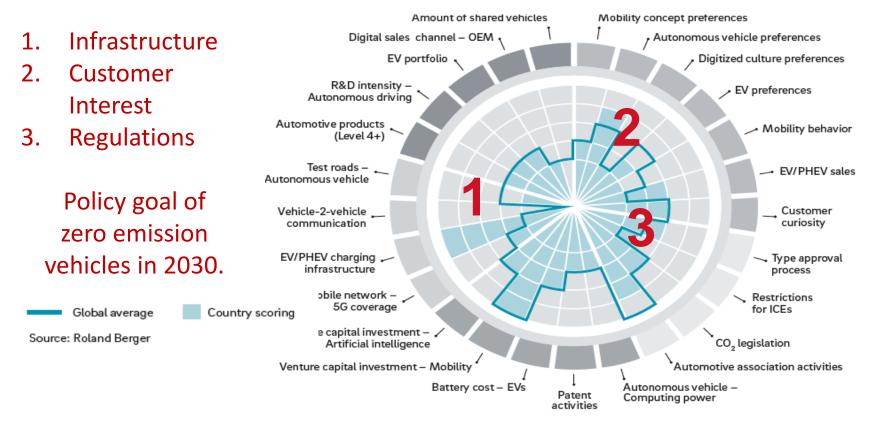

Peter Toonssen Karel Spee

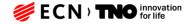
Rijksdienst voor Ondernemend Nederland


ECN) **TNO** innovation for life

GROWTH OF EVS

ECN > TNO innovation for life


ELECTRIC TRANSPORTATION



Netherlands – EVs are 6.4% of national market share (2017)

Global EV Outlook 2017 - IEA

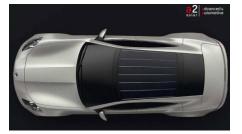
NETHERLANDS: #1 COUNTRY FOR EVS

NETHERLANDS CHAMPIONS 2017!

1st Place: Cruiser Class

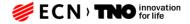
1st Place: Challenger Class

COMMERCIALLY AVAILABLE SOLAR ASSISTED CARS



Toyota Prius PHEV 180 W Audi e-tron Quattro 400 W

VW Tiguan GTE 110 W

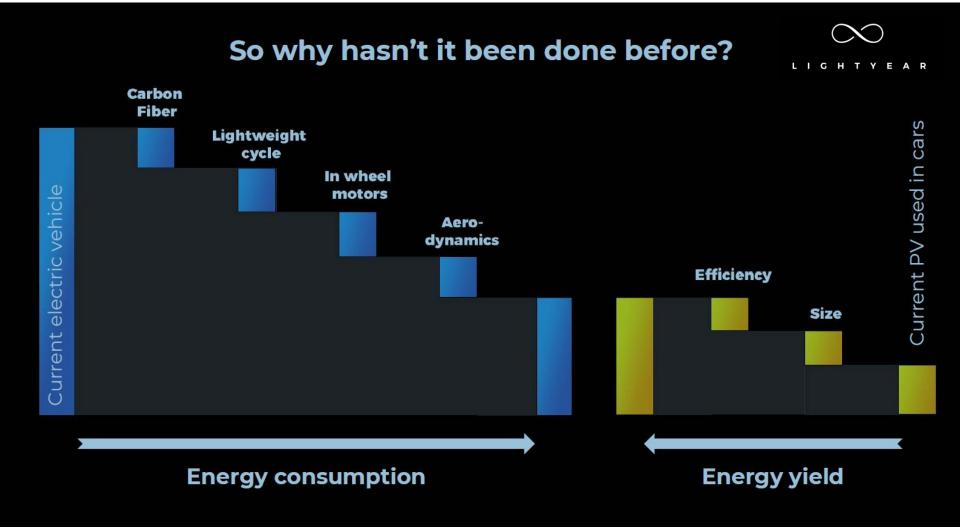


Karma Revero

- 200 W solar roof
- 2000 km/yr

LIGHTYEAR

SOLAR POWERED CARS


Sion from Sono Motors

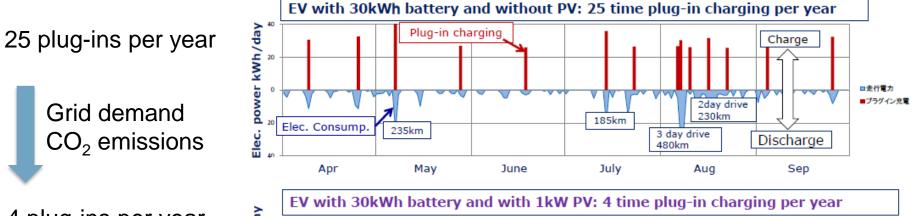
- ~1200 Wp on car
- Sunpower IBC cells
- €19,000

Lightyear One from Lightyear

- > 1000 Wp-effective on car
- IBC cells
- €119,000

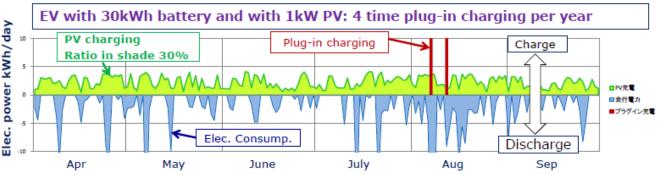
UNDERSTANDING THE BUSINESS CASE

5,000 persons in Japan


Home

Sun SUM [%]

- 6:00 ~ 7:00 ~ 8:00 ~ 9:00 ~ 10:00 ~ 11:00 ~ 12:00 ~ 13:00 ~ 14:00 ~ 5:00 ~ 16:00 ~ 17:00 ~ 18:00 ~ [%] Other Styles of driving Shade Company Commuter Home Family car Other Sun Company Car sharing Home Taxi Sun SUM [%] 46 Delivery 500 persons in California, US 9:00 ~ 10:00 ~ 11:00 ~ 12:00 ~ 13:00 ~ 14:00 ~ 15:00 ~ 16:00 ~ 17:00 ~ 18:00 6:00 ~ 7:00 ~ 8:00 Long haul [%] Other Shade Company Home Other Sun Company
 - Study results from Akinori Sato, Toyota R&D



WHY SOLAR-POWERED CARS?

4 plug-ins per year

* Analysis based on actual driving (6310 km/yr) and irradiance data in Japan for 30 kWh Nissan Leaf

Toshio Hirota, Environmental Research Institute, Waseda University, Japan

TRANSPORT MARKETS CHARACTERISTICS

	 Passenger cars Trucks, vans Off-Highway Specials vehicles 	 Most innovative, largest R&D budgets large impact, good delivery remote operation extension, specific niches city service vehicles, etc. 	2 – 6 m² 30 - 45 m²
>	Buses		
	> Buses	 Urban public transport transition to Zero Emission 	25 - 40 m ²
	Coaches	 Private tours, eco-tourism 	< 40 m ²
>	Rail		
	Train	 Energy footprint reduction 	150 - 400 m²
	Tram / Light rail	 Energy footprint reduction 	50 - 100 m ²
>	Ships		
	Inland shipping	 – support transition to low carbon (hybrid) propulsion 	250 - 3000 m ²
	Yachting	 added luxury and autonomy, silent hotel function 	10 - 100+ m ²
	Marine	 – support transition to low carbon (hybrid) propulsion 	500 - 10.000 m

Automotive

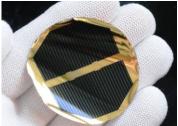
>

ECN > **TNO** innovation for life

SOLAR RESEARCH

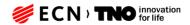
SOLLIANCE

ECN > TNO innovation for life

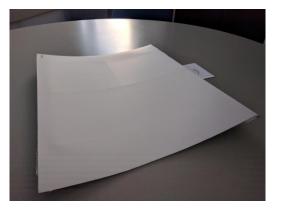

TECHNICAL CHALLENGES FOR PV ON CARS

- Maximum performance (Max. sun-facing area 5 m²)
 - > 20+% efficiency laminated (flat?)
 - Curved surface > 85% utility
 - Good shade performance (<30% shading losses)</p>
- > Lightweight for vehicle efficiency
- > Aerodynamics and Aesthetics
 - > Needs to flexibly follow car roof
 - reduced drag (30% less than current best in class vehicles)
 - Materials, coatings, and layout
- Reliability
 - > 15 years
 - > High wind and speed damage

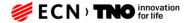
WHICH TECHNOLOGY?


	c-Si	Thin-Film (CIGS)	MJ - III-Vs
Efficiency	24%	17%	29%
Power Density/Weight	+?	+	++
Flexibility	?	++	++
Cost	++	+	

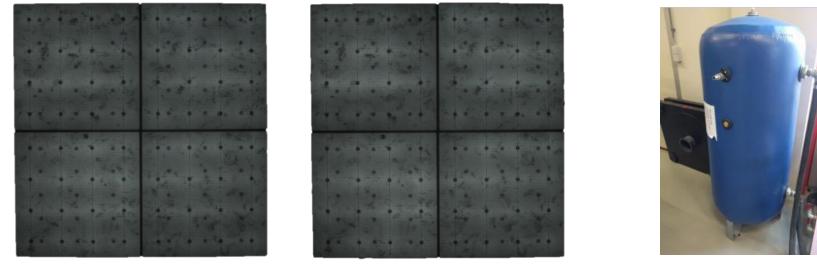
CONDUCTIVE BACK CONTACT FOIL


- Designed for highest efficiency c-Si cells
- Flexible circuit and cell placement
- Variable sizes
- Easy lamination process
- Proven high-volume manufacturing (Eurotron)

TEST STRUCTURES

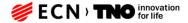


FLEXIBILITY AND AERODYNAMICS

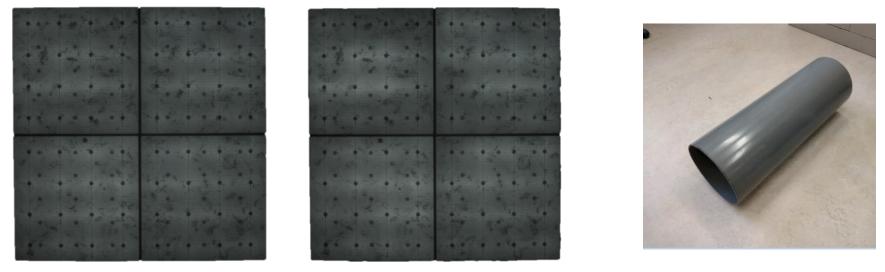


Flat

 $R_{curv.} = 178 \text{ cm}$



FLEXIBILITY AND AERODYNAMICS



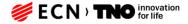
Flat

 $R_{curv.} = 30 \text{ cm}$

FLEXIBILITY AND AERODYNAMICS

Flat

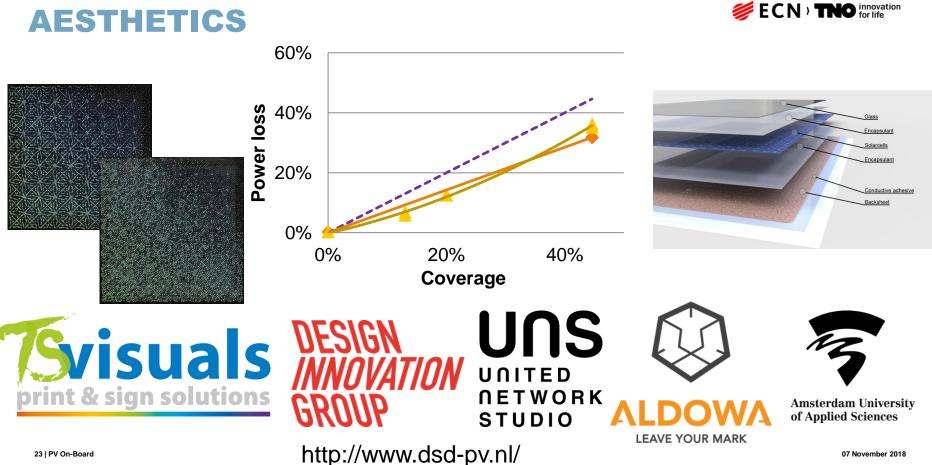
R_{curv.} = 12.5 cm


 $\Delta \text{eff} = -0.9\%$

MAXIMUM YIELD

Small cells

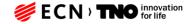
- Conductive foil used to create specific circuitry
 - > Tunable voltage and current
 - > Integration of other components in foil
- > Excellent partial shade performance



LIGHTWEIGHT, FLEXIBLE MODULE

- Glass free semi-flexible
- > Small cell with built in dynamic performance
- > Matte finish for aesthetics

	c-Si
Efficiency	24%
Power Density/Weight	++
Flexibility	++
Cost	++



SOLAR ELECTRIC VEHICLES

- > c-Si can be made flexible and lightweight
- Components are now available and cost effective
- > PV efficiency high enough to significantly contribute to power demands of electric vehicles
- > Technical developments are easily applicable to BIPV and other mobile applications
- Many questions still need answers
 - > Real-time performance and lab testing?
 - > Reliability and repairability?
 - > Safety?
 - Manufacturability and costs?

IEA PVPS TASK 17: PV IN TRANSPORT

- 1. Identify expected/possible benefits and requirements
- 2. Identify barriers and solutions
- 3. Deployment of PV equipped charging stations
- 4. Integrating PV-powered vehicles with electrical systems
- 5. Develop a roadmap
- 6. Involve international stakeholders

WANT TO GET INVOLVED?

Join Task 17

- We need:
 - > Research Institutes to collect and analyze local data
 - > Automotive Industry to define targets, markets, and direct technology needs
 - > EV supply chain companies to define vehicle demands
 - > EV charging/infrastructure companies to define charging modes
 - **Governments or Other** to define driving models and government needs

Contact:

Bonna Newman <u>bonna.newman@tno.nl</u> Anna Carr <u>anna.carr@tno.nl</u> Angèle Reinders <u>a.h.m.e.reinders@utwente.nl</u> Otto Bernsen otto.Bernsen@rvo.nl Wijnand van Hoff wijnad@tki-urbanenergy.nl

THANK YOU FOR YOUR ATTENTION

TNO.NL/ECNPARTOFTNO

ECN > TNO innovation for life