

Modelling the impact of VIPV

Dr. Lenneke Slooff-Hoek
SunChain 2024

SolarMoves Project

1. Define the vehicle archetypes = vehicle type + use pattern 💮 🚗 🚗 🚃 🚃 🌉

Definition of archetypes - Vehicles and use patterns

- A combination of a vehicle category and a use pattern
- Each archetype has an annual mileage based on European averages

Vehicle class and type	Use pattern
Small passenger car	'occasional use'
	'daily urban commute'
	'daily periurban commute'
	'long-distance highway travel'
	'car sharing'
	'daily urban commute'
Medium sized	'daily periurban commute'
passenger car	'long-distance highway travel'
	'daily urban commute'
SUV	'daily periurban commute'
	'long-distance highway travel'
Small van	'Local distribution'
	'Regional distribution'
Large van	'Local distribution'
	'Regional distribution'
Low-floor bus	'Urban public transport service'
	'Periurban public transport service'
High-floor coach	'Regional public transport'
	'Long-distance highway travel'
Rigid truck	'Urban distribution'
	'Regional distribution'
Tractor-trailer	'Regional distribution'
	'Long-haul freight transport'

1. Define the vehicle archetypes = vehicle type + use pattern

2. Define the trip definition based on the use pattern

Driving profile: Medium sized passenger car

- 1. Define the vehicle archetypes = vehicle type + use pattern
- 2. Define the trip definition based on the use pattern
- 3. Run the model MEO model to calculate the energy consumption of the vehicle along the trip

- 1. Define the vehicle archetypes = vehicle type + use pattern
- 2. Define the trip definition based on the use pattern
- 3. Run the model MEO model to calculate the energy consumption of the vehicle along the trip
- 4. Run the Energy Flow Model to determine the State of Charge of the battery and charging moments

Energy Flow Model Results

PV contribution wrt total energy consumption

- Cars with low annual range: up to 50-80% of PV contribution
- Vans: 20-30% PV contribution
- Busses: PV contributes only small fraction -> relative low area for PV and long distances
- Trucks/tractor:
 - up to 15% PV contribution
 - PV on sides doubles
 PV contribution

Modeling the impact of VIPV

1. Using modelled irradiance based on Meteo data (Global Horizontal Irradiance)

Modeling the impact of VIPV

- 1. Using modelled irradiance based on Meteo data (Global Horizontal Irradiance)
- 2. Using measured irradiance data

Sydney Bus Irradiance Survey: From Oct. 2020

irradiance

Courtesy Ned Ekins-Daukes - UNSW

Sydney Bus Irradiance Survey: From Oct. 2020

Courtesy Ned Ekins-Daukes - UNSW

Single day analysis

- 195 km route
- 1.65kW PV (8m²)
- PV generated 11.8 kWh
- Battery used 234 kWh
- Battery size 290 kWh
- PV contribution 5%
- PV utilised 100%

Conclusion

- VIPV can make significant contributions
 - trucks and tractors/trailers up to 15% in Madrid
 - busses up to about 5 %
 - Cars up to 80%
 - Vans up to 30%
- PV has a comparable effect as other energy efficiency improvements
- Also measured irradiance can be used in stead of averaged irradiance data
- Advanced shading model takes into account actual shading along a route

Acknowledgements

Anna J. Carr

Ashish Binani

Akshay Bhoraskar

Oscar van de Water

Michiel Zult

René van Gijlswijk

Lenneke Slooff-Hoek

Ned Ekins-Daukes

Wim Soppe

Part of this work was carried out in the framework of a direct assignment by the DG MOVE under SERVICE CONTRACT N° MOVE/B4/SER/2021-651/SI2.887931:_ MOVE/2022/OP/0003

